Fall Back Equilibrium for 2 X n Bimatrix Games

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equilibrium Tracing in Bimatrix Games

We analyze the relations of the van den Elzen-Talman algorithm, the Lemke-Howson algorithm and the global Newton method introduced by Govindan and Wilson. It is known that the global Newton method encompasses the Lemke-Howson algorithm; we prove that it also comprises the van den Elzen-Talman algorithm, and more generally, the linear tracing procedure, as a special case. This will lead us to a ...

متن کامل

Improved Equilibrium Enumeration for Bimatrix Games

The enumeration of all equilibria of a bimatrix game is a classical algorithmic problem in game theory. As shown by Vorob’ev (1958), Kuhn (1961), and Mangasarian (1964), all equilibria can be represented as convex combinations of the vertices of certain polyhedra defined by the payoff matrices. Simplified by a projective transformation that eliminates the payoff variable, these polyhedra have t...

متن کامل

Fall back equilibrium

Fall back equilibrium is a refinement of the Nash equilibrium concept. In the underlying thought experiment each player faces the possibility that, after all players decided on their action, his chosen action turns out to be blocked. Therefore, each player has to decide beforehand on a back-up action, which he plays in case he is unable to play his primary action. In this paper we introduce the...

متن کامل

An Algorithm for Equilibrium Points in Bimatrix Games.

pi[M] = 3a(M). (Cf. Hirzebruch, ref. 4, Theorem 8.2.2, p. 85.) The proof of Lemma 1 is bagbd on the fact that 7rn+3(S5) is cyclic of order 24 for n > 5. t In the sense of J. H. C. Whitehead.'0 Any two regular neighborhoods of K in M are combinatorially equivalent by reference 10, Theorem 23. 1 Blij, F. van der, "An invariant of quadratic forms mod 8.," Proc. Nederl. Akad. v. Wetenschappen, Ser....

متن کامل

Computation of Completely Mixed Equilibrium Payoffs in Bimatrix Games

Computing the (Nash) equilibrium payoffs in a given bimatrix game (i.e., a finite two-person game in strategic form) is a problem of considerable practical importance. One algorithm that can be used for this purpose is the Lemke-Howson algorithm (Lemke and Howson (1964); von Stengel (2002)), which is guaranteed to find one equilibrium. Another, more elementary, approach is to compute the equili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2012

ISSN: 1556-5068

DOI: 10.2139/ssrn.2071220